INCA-IP2

Infineon Single Chip Solution for IP Phone

INCA-1P2-S (PSB 21653), V1.2 Q

INCA-IP2-C (PSB 21621), V1.1

: A
User’s @u als>
BootROM é\
Revision

Communication Solutions

July 2006

(infineon

Never stop thinking

Edition 2006-07-28

Published by
Infineon Technologies AG
81726 Miinchen, Germany

© Infineon Technologies AG 2006.
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values
stated herein and/or any information regarding the application of the device, Infineon Technologies hereby
disclaims any and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

http://www.infineon.com

@ineo/n b

CONFIDENTIAL

INCA-IP2 Infineon Single Chip Solution for IP Phone
CONFIDENTIAL
Revision History: 2006-07-28, Revision 1.1

Previous Version:

Page Subjects (major changes since last revision)

Trademarks

ABM®, ACE®, AOP®, Arcofi®, ASM®, ASP®, BlueMoon®, BlueNIX®, C166®, DuSLIC®, ELIC®, Epic®, FALC®,
GEMINAX®, Idec®, INCA®, IOM®, Ipat®-2, IPVD®, Isac®, Itac®, IWE®, INORX®, M-GOLD®, MUSAC®, MuSLIC®,
OCTALFALC®, OCTAT®, POTSWIRE®, QUADFALC®, QUAT® SCOUT®, SCT® SEROCCO®, S-GOLD®,
SICAT®, SICOFI®, SIDEC®, SIEGET®, SLICOFI®, SMARTI®, SOCRATES®, VDSLite®, VINETIC®, 10BaseS® are
registered trademarks of Infineon Technologies AG.

ConverGate™, DIGITAPE™, DUALFALC™, EasyPort™, S-GOLDIite™, S-GOLD2™, S-GOLD3™, VINAX™,
WildPass™, 10BaseV™, 10BaseVX™ are trademarks of Infineon Technologies AG.

Microsoft® and Visio® are registered trademarks of Microsoft Corporation. Linux® is a registered trademark of
Linus Torvalds. FrameMaker® is a registered trademark of Adobe Systems Incorporated. APOXI® is a registered
trademark of Comneon GmbH & Co. OHG. PrimeCell®, RealView®, ARM® are registered trademarks of ARM
Limited. OakDSPCore®, TeakLite® DSP Core, OCEM® are registered trademarks of ParthusCeva Inc.

IndoorGPS™, GL-20000™, GL-LN-22™ are trademarks of Global Locate. ARM926EJ-S™, ADS™ Multi-ICE™
are trademarks of ARM Limited.

User’'s Manual 3 Revision 1.1, 2006-07-28
BootROM

@ineo/n b

CONFIDENTIAL Table of Contents

Table of Contents

Table of Contents 4

List of Figures 5

Listof Tables 6
1 Introduction 7
1.1 Bootable Interfaces 7
2 Implementation 8
21 BOOt Core . ..o 8
2.2 BOOtROM MOdUIES e e 10
221 Bootstrap CMD e 10
222 SP L 11
2.2.3 AS C L e 11
224 NAND . . 11
3 Image Generation 13
3.1 MKbOOtIMQ.INCAIP2 13
3.1.1 Valid TOKENS 13
3.1.1.1 TAG _REGCFG . .. e e 13
3.1.1.2 TAG _DWNLD . .o e 13
3.1.1.3 TAG ST AR L 13
3.1.2 Valid Flagso 14
3.1.21 FLAG _SDBG ... o 14
3.1.2.2 FLAG START .. e e e 14
3.1.3 Configuration example e 14
User’s Manual 4 Revision 1.1, 2006-07-28

BootROM

@ineo/n b

CONFIDENTIAL List of Figures

List of Figures

Figure 1 BOOtROM EXCEPtiONS o o 8
Figure 2 MPS Memory BootROM Content e e e 9
Figure 3 Bootstrap CMD Structure e e 10
Figure 4 NAND Kernel BoOot e e e 12
User’s Manual 5 Revision 1.1, 2006-07-28

BootROM

@ineo/n b

CONFIDENTIAL List of Tables
List of Tables

Table 1 CPUO BOOt SOUICESt e e e e e e e e e 7
Table 2 CPUT BOOt SOUIMCESttt e e e e e 7
Table 3 MPS Memory BootROM Content e e e 8
User’'s Manual 6 Revision 1.1, 2006-07-28

BootROM

@ineo/n b

CONFIDENTIAL Introduction
1 Introduction
11 Bootable Interfaces

Table 1 describes the interfaces the internal boot ROM code can boot from. In direct boot mode both CPUs access
the external FLASH connected to the EBU. The external startup code needs to take care of all startup related
issues (exception handling, CPU dispatching). This boot mode is intended as fallback or for special applications.
All other boot modes will be supported by the internal boot ROM code. In this mode all exceptions will cause both
CPUs to jump to the exception handler located in the ROM by default.

Table 1 CPUO Boot Sources

CFG(2:0) Primary Secondary Remark

000 EBU

001 BootROM ASCO Serial X-Modem bootstrap

010 BootROM SPIO0 (gen.) SPI bootstrap, EEPROM command set
011 BootROM SPI0 (ATMEL) SPI bootrstrap, ATMEL command set
100 BootROM EBU NAND (small) |528byte (small page) NAND

101 BootROM EBU NAND (large) |2112byte (large page) NAND

110 BootROM reserved Reserved

111 BootROM reserved Reserved

Table 2 CPU1 Boot Sources

CFG(2:0) Primary Secondary Remark
000 EBU
001..111 BootROM SDRAM Boot vector location read from VRAM

When CFG2:0 equals 000, both CPUs directly boot from external FLASH memory. Since the boot process is
handled by the external code completely, this case is not described within this document. Nevertheless CPUO may
change the CFG settings by software, therefore changing CPU1 boot mode. For all cases where CFG2:0 is not
equal to 000, both CPUs will fetch instructions from the boot ROM after reset and for certain exceptions.

User’s Manual 7 Revision 1.1, 2006-07-28
BootROM

@ineo/n b

CONFIDENTIAL Implementation
2 Implementation
21 Boot Core

The boot core is written in assembler and takes care of

+ MIPS24KEc initialization

+ Cache initialization

* CPU exception handling

* CPU dispatch

* Low-level boot error signalling

All of the BootROM code is executed on exception level, so it is up to the subsequent boot code to take care for
entering normal operation. The CPU enters the state “HALT” in case of any unhandled exception, which actually
means updating the “BOOT_STATUS” field in the status register (described later on) and entering an infinite loop.
In case of an EJTAG exception the CPU executes a DERET in addition to allow usage of the debugger.

RESET
NMI

BootROM /
SW HANDLER

()
TLB Refill
(BEV=1, EXL=1)
Others

0xBFC00380

0xBFC00000

TLB Refill
(BEV=1, EXL=0)
0xBFC00200

EJTAG (ProbEn=0)
0xBFC00480 SW HANDLER

HALT (DERET) /

—

DBG

BOOTROM IRQVEC

Figure 1 BootROM Exceptions

All information needed by the BootROM is stored in the upmost section of the internal Multi Processor System
(MPS) memory. The defined fields and their function are listed in the subsequent table.

Table 3 MPS Memory BootROM Content

Register Description

BOOT_RVEC Start address to jump to after reset. Will be filled by BootROM for CPUO and has to be filled
by CPUO for CPU1.

BOOT_NVEC Start address to jump to after NMI.

User’s Manual 8 Revision 1.1, 2006-07-28

BootROM

INCA-IP2

@l n eo/n BootROM

CONFIDENTIAL

Implementation

Table 3 MPS Memory BootROM Content (cont’d)

Register Description

BOOT_EVEC Start address to jump to after EJTAG exception.

CPO_CAUSE MIPS CPU register, will be dumped on HALT condition.

CPO_EEPC MIPS CPU register, will be dumped on HALT condition.

CPO_EPC MIPS CPU register, will be dumped on HALT condition.

BOOT_SIZE Only valid for CPU1 - contains the size of the FW code for memory mapping and optional
decryption. Has to be filled by CPUO for CPU1.

BOOT_RCU_SR Only valid for CPUO - contains the value for register RCU_SR on boot of CPUQ.

BOOT_CONFIG Configuration word latched in during boot (content of RST_SR >> 1), or boot configuration

tag like read from boot media as soon as first tag is processed.

BOOT_STATUS

BootROM status and error information; should contain latest operation or error code.

The register set is duplicated for both CPUs, resulting in the layout shown in Figure 2.

0x01FC |BOOT_CONFIG | BOOT_STATUS
O0x01F8 BOOT_SIZE
0x01F4 CPO_EPC
0x01FO0 CPO_EEPC
— CPU1
O0x01EC CP0_CAUSE
O0x01E8 BOOT_EVEC
0x01E4 BOOT_NVEC
0x01EQ BOOT_RVEC
0x01DC |BOOT_CONFIG|BOOT_STATUS
0x01D8 BOOT_RCU_SR
0x01D4 CPO_EPC
0x01D0 CPO_EEPC
0x01CC CP0_CAUSE CPUO
0x01C8 BOOT_EVEC
0x01C4 BOOT_NVEC
0x01C0 BOOT_RVEC
—~ —_
0x0000
MPS MEMORY CONTENT

Figure2 MPS Memory BootROM Content

User’'s Manual
BootROM

9 Revision 1.1, 2006-07-28

@fineo/n b

CONFIDENTIAL Implementation

2.2 BootROM Modules

221 Bootstrap CMD

Due to the implementation of INCA-IP2 the external boot medium needs to contain information about SDR/DDR
SDRAM memory setup before first memory access. Therefore the boot loader expects a special command
structure as depicted in following figure. The data format is common for all bootstrap capable interfaces, so that
the same binary image can be used independent from the boot source.

The command module accepts three types of commands:
* Register configuration (REGCFG)

+ Code download (DWNLD to external memory)
« Start code execution (START)

All commands share a 32-bit tag and the 32-bit length field, containing the number of bytes in the data field. The
tag consists of two 16 bit words that add up to OxFFFF for easy validity checking. The content of the data section
is defined by the respective command and described later on.

Common format:
32 0
TAG TAG TAG’
LENGTH (OXFFFF - TAG)
DATA
8bit CMDID 8bit FLAGS
SDBG START]
Output of serial debug information.
(1 =ena; 0 =dis)
Jump to start address after processing
current TAG.
32 0 32 0 Start format:
REGCFG DWNLD 32 0
LENGTH LENGTH START
ADDR ADDR LENGTH
VALUE ADDR
ADDR CODE
VALUE '
BOOTROM FORMAT
Figure 3 Bootstrap CMD Structure
User’'s Manual 10 Revision 1.1, 2006-07-28

BootROM

@ineo/n b

CONFIDENTIAL Implementation

Register Configuration (REGCFG, CMDID=0x22)

The “REGCFG” command is supplied in order to do SDRAM controller configuration and any other register
settings that might be necessary on boot (e.g. workaround). It consists of 32 bit pairs containing register address
(“ADDR”) and value to write (“VALUE”), which will be parsed sequentially until the number of 32 bit words (stored
in “LENGTH") is reached. There is no address verification or value checking implemented.

SDRAM Download (DWNLD, CMDID=0x55)

The download command copies the amount of data specified by field “LENGTH” to the address “ADDR”, reading
back certain memory locations in order to detect memory failures. The bootloader assumes that the SDRAM has
been set up before this command is executed (e.g. using “REGCFG” command).

Code Execution (START, CMDID=0x77)

After successful configuration of the memory interface and downloading the code, the START command will cause
the CPU to jump to the specified address.

2.2.2 SPI

The SPI module allows boot strap of devices conforming to SPI mode 0. The default speed of the interface will be
limited to 1 MHz to allow booting from all types of devices. To speed up the actual download the maximum
supported interface speed can be provided using a small application executed in MPS memory. The separate boot
mode for ATMEL devices supports a different commandset (read command Ox8E), while the generic mode will
use the wide spread command set where read is represented by “0x03”. To achieve compatibility with most
devices concerning address length, the loader will probe the number of expected address bytes. This is done by
counting the address byte(s) 0x00 following a read command as long as no data is received. Therefore the first
byte in serial FLASH memory needs to be different from OxFF.

223 ASC

The ASC boot strap uses the X-Modem protocol to download the commands on the serial interface. The default
settings of the ASC are 115200 baud, no parity, 1 stop bit. The module either supports standard X-Modem (128
byte frames, simple checksum) or X-Modem 1k (1024 byte frames, CRC16) for higher throughput. Since X-Modem
allows up to 1 minute delay after transmitting the first frame, the memory setup commands (REGCFG or IDWNLD)
need to fit into the first 128 or 1024 byte depending on used X-Modem speed. This assures that the following
transmission succeeds, since X-Modem has no defined flow control.

224 NAND

The NAND FLASH module allows booting from a standard NAND memory with “guaranteed correct” block 0. The
BootROM includes neither ECC checking/correction nor bad block handling algorithms. Therefore the executed
software needs to fit into this boot sector (16k for small, 64k for large page NAND) and a two level loader approach
needs to be used. The NAND FLASH boot process for a Linux kernel is depicted in the following illustration.

User’s Manual 1M Revision 1.1, 2006-07-28
BootROM

@ineo/n b

CONFIDENTIAL Implementation

BootROM BootROM configures memory interface and copies boot loader code from NAND
00 FLASH to external RAM (no ECC/bad block handling)
2nd level loader copies image from NAND to external RAM
(with ECC/bad block handling)

U-Boot Full-featured Bootloader (network updates,
debug, etc.) starts operating system

> BootROM >> 2'LL>> U-Boot >> Linux >

NAND FLOW

Figure 4 NAND Kernel Boot

User’s Manual 12 Revision 1.1, 2006-07-28
BootROM

@in@ b

CONFIDENTIAL Image Generation

3 Image Generation

CPUO expects to receive the images on the boot strap interfaces compliant to the message format described in
the previous chapters. Infineon provides an image generator for converting standard binaries into the format used
by the INCA-IP2 BootROM.

3.1 mkbootimg.incaip2

The mkbootimg tool is provided with the INCA-IP2 BSP and can be run on any Linux machine. It has to be called
like

mkbootimg.incaip2 <outfile> < <configfile>

whereas <outfile> is the name of the image to generate and <configfile> is image description. Please note that the

memory controller initialization must be done before issuing any download command and that the register
configuration needs to fit into the first block of the used boot interface.

3.1.1 Valid Tokens

The image description language consists of a combination of the following tokens. The tokens may contain single-
line comments enclosed with /**/.

3111 TAG_REGCFG

The token TAG_REGCFG allows setting one or more internal register(s) specified by <address> to <value>. There
is no address validation done in the BootROM.
TAG_REGCFG (<flag>)
{
<address> <value>
[<address> <value>]

Y

31.1.2 TAG_DWNLD

The token TAG_DWNLD allows to download the binary image specified by <filename> (needs to be in quotes, e.g.
“image.bin”) to the address specified by <address>. The BootROM will halt in case the given address can not be
written since the memory controller configuration is invalid. Please make sure that the executable image has been
compiled for execution in memory at the same location.

TAG_DWNLD (<flag>)

{

<address> <filename>

Y

3.1.1.3 TAG_START

The token TAG_START allows to start the binary image at location <address> - the BootROM will perform a direct
jump. The BootROM does not check the specified location for valid code.

TAG_START (<flag>)

{

<address>

Y

User’'s Manual 13 Revision 1.1, 2006-07-28
BootROM

INCA-IP2
BootROM

CONFIDENTIAL

Image Generation

3.1.2 Valid Flags

Each of the tokens described above may contain one ore more of the following flags.

3.1.21 FLAG_SDBG

The token FLAG_SDBG allows to enable several debug prints on interface ASCO. This option must not be used
for X-Modem bootstrap, since the prints will disturb the serial protocol.

Example:
TAG_REGCFG (FLAG_SDBG)
{

<address> <value>

Y

3.1.22 FLAG_START

The token FLAG_START allows to start the binary <filename> at location <address> after download. The
BootROM will be continued after the called routine issues a return instruction.

Example:
TAG_DWNLD (FLAG_START)
{
<address> <filename>
Y

313 Configuration example
The following configuration file example will generate an image that

» configures the memory controller for SDRAM access
» downloads the U-Boot to SDRAM memory
» starts the U-Boot

/* Example image file for INCA-IP2 image generator */
/* Don't use multi-line comments... */
TAG_REGCFG ()

{

0xBF800060 0x00000006 /* MC_CON */
0xBF800200 0x00000802 /* MC_IOGP */
0xBF800230 0x00000002 /* MC_CFGDW */
0xBF800220 0x00000020 /* MC_MRSCODE */
0xBF800240 0x000014C9 /* MC_CFGPBO */
0xBF800280 0x00036325 /* MC_LATENCY */
0xBF800290 0x00000C30 /* MC_TREFRESH */
0xBF8002A0 0x00000000 /* MC_SELFRFSH */
0xBF800210 0x00000001 /* MC_CTRLENA */

}i

TAG_DWNLD ()

{
0x80£00000 "u-boot.bin" /* Download u-boot image */

Y

TAG_START ()

{
0x80f00000 /* Start u-boot image */

User’'s Manual 14

BootROM

Revision 1.1, 2006-07-28

. INCA-IP2

Infineon BootROM
___—

CONFIDENTIAL Image Generation

Y
The content of the generated image might be (commands marked blue):

0000000: 2200ddff 00000048 bf800060 00000006
0000020: bf800200 00000802 bEf800230 00000002
0000040: b£f800220 00000020 b£f800240 000014co
0000060: b£f800280 00036325 b£f800290 00000c30
0000100: b£f8002a0 00000000 bL£800210 00000001
0000120: 5500aaff 000265£8 80£00000 ££000010
0000140: 00000000 £d4000010 00000000 <4400000
0000160: 00000000 75010010 00000000 73010010
0000200: 00000000 71010010 00000000 6£010010
0000220: 00000000 64010010 00000000 6b010010

0463060: e033£280 0034£280 3035£280 10000000
0463100: 01000000 cc01£180 3435£280 00000000
0463120: 770088ff 00000004 80£00000

User’'s Manual 15 Revision 1.1, 2006-07-28
BootROM

http://www.infineon.com

	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Bootable Interfaces

	2 Implementation
	2.1 Boot Core
	2.2 BootROM Modules
	2.2.1 Bootstrap CMD
	2.2.2 SPI
	2.2.3 ASC
	2.2.4 NAND

	3 Image Generation
	3.1 mkbootimg.incaip2
	3.1.1 Valid Tokens
	3.1.1.1 TAG_REGCFG
	3.1.1.2 TAG_DWNLD
	3.1.1.3 TAG_START

	3.1.2 Valid Flags
	3.1.2.1 FLAG_SDBG
	3.1.2.2 FLAG_START

	3.1.3 Configuration example

